Copied to
clipboard

G = C42⋊3- 1+2order 432 = 24·33

The semidirect product of C42 and 3- 1+2 acting via 3- 1+2/C9=C3

metabelian, soluble, monomial

Aliases: C4213- 1+2, C9⋊(C42⋊C3), (C4×C36)⋊2C3, C42⋊C91C3, (C2×C18).3A4, C22.(C9⋊A4), (C4×C12).2C32, (C3×C42⋊C3).C3, (C2×C6).7(C3×A4), C3.3(C3×C42⋊C3), SmallGroup(432,100)

Series: Derived Chief Lower central Upper central

C1C4×C12 — C42⋊3- 1+2
C1C22C42C4×C12C3×C42⋊C3 — C42⋊3- 1+2
C42C4×C12 — C42⋊3- 1+2
C1C3C9

Generators and relations for C42⋊3- 1+2
 G = < a,b,c,d | a4=b4=c9=d3=1, dbd-1=ab=ba, cac-1=ab-1, dad-1=a2b, cbc-1=a-1b2, dcd-1=c4 >

3C2
48C3
3C4
3C4
3C6
16C9
16C32
16C9
3C2×C4
3C12
3C12
12A4
3C18
163- 1+2
3C2×C12
3C36
3C36
4C3×A4
4C3.A4
4C3.A4
3C42⋊C3
3C2×C36
4C9⋊A4

Smallest permutation representation of C42⋊3- 1+2
On 108 points
Generators in S108
(1 40)(2 104 41 63)(3 105 42 55)(4 43)(5 107 44 57)(6 108 45 58)(7 37)(8 101 38 60)(9 102 39 61)(10 82)(11 66 83 94)(12 67 84 95)(13 85)(14 69 86 97)(15 70 87 98)(16 88)(17 72 89 91)(18 64 90 92)(19 54 77 28)(20 78)(21 47 79 30)(22 48 80 31)(23 81)(24 50 73 33)(25 51 74 34)(26 75)(27 53 76 36)(29 46)(32 49)(35 52)(56 106)(59 100)(62 103)(65 93)(68 96)(71 99)
(1 103 40 62)(3 55 42 105)(4 106 43 56)(6 58 45 108)(7 100 37 59)(9 61 39 102)(10 65 82 93)(12 95 84 67)(13 68 85 96)(15 98 87 70)(16 71 88 99)(18 92 90 64)(19 28 77 54)(20 46 78 29)(22 31 80 48)(23 49 81 32)(25 34 74 51)(26 52 75 35)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)
(1 31 94)(2 29 98)(3 36 93)(4 34 97)(5 32 92)(6 30 96)(7 28 91)(8 35 95)(9 33 99)(10 105 27)(11 103 22)(12 101 26)(13 108 21)(14 106 25)(15 104 20)(16 102 24)(17 100 19)(18 107 23)(37 54 72)(38 52 67)(39 50 71)(40 48 66)(41 46 70)(42 53 65)(43 51 69)(44 49 64)(45 47 68)(55 76 82)(56 74 86)(57 81 90)(58 79 85)(59 77 89)(60 75 84)(61 73 88)(62 80 83)(63 78 87)

G:=sub<Sym(108)| (1,40)(2,104,41,63)(3,105,42,55)(4,43)(5,107,44,57)(6,108,45,58)(7,37)(8,101,38,60)(9,102,39,61)(10,82)(11,66,83,94)(12,67,84,95)(13,85)(14,69,86,97)(15,70,87,98)(16,88)(17,72,89,91)(18,64,90,92)(19,54,77,28)(20,78)(21,47,79,30)(22,48,80,31)(23,81)(24,50,73,33)(25,51,74,34)(26,75)(27,53,76,36)(29,46)(32,49)(35,52)(56,106)(59,100)(62,103)(65,93)(68,96)(71,99), (1,103,40,62)(3,55,42,105)(4,106,43,56)(6,58,45,108)(7,100,37,59)(9,61,39,102)(10,65,82,93)(12,95,84,67)(13,68,85,96)(15,98,87,70)(16,71,88,99)(18,92,90,64)(19,28,77,54)(20,46,78,29)(22,31,80,48)(23,49,81,32)(25,34,74,51)(26,52,75,35), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108), (1,31,94)(2,29,98)(3,36,93)(4,34,97)(5,32,92)(6,30,96)(7,28,91)(8,35,95)(9,33,99)(10,105,27)(11,103,22)(12,101,26)(13,108,21)(14,106,25)(15,104,20)(16,102,24)(17,100,19)(18,107,23)(37,54,72)(38,52,67)(39,50,71)(40,48,66)(41,46,70)(42,53,65)(43,51,69)(44,49,64)(45,47,68)(55,76,82)(56,74,86)(57,81,90)(58,79,85)(59,77,89)(60,75,84)(61,73,88)(62,80,83)(63,78,87)>;

G:=Group( (1,40)(2,104,41,63)(3,105,42,55)(4,43)(5,107,44,57)(6,108,45,58)(7,37)(8,101,38,60)(9,102,39,61)(10,82)(11,66,83,94)(12,67,84,95)(13,85)(14,69,86,97)(15,70,87,98)(16,88)(17,72,89,91)(18,64,90,92)(19,54,77,28)(20,78)(21,47,79,30)(22,48,80,31)(23,81)(24,50,73,33)(25,51,74,34)(26,75)(27,53,76,36)(29,46)(32,49)(35,52)(56,106)(59,100)(62,103)(65,93)(68,96)(71,99), (1,103,40,62)(3,55,42,105)(4,106,43,56)(6,58,45,108)(7,100,37,59)(9,61,39,102)(10,65,82,93)(12,95,84,67)(13,68,85,96)(15,98,87,70)(16,71,88,99)(18,92,90,64)(19,28,77,54)(20,46,78,29)(22,31,80,48)(23,49,81,32)(25,34,74,51)(26,52,75,35), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108), (1,31,94)(2,29,98)(3,36,93)(4,34,97)(5,32,92)(6,30,96)(7,28,91)(8,35,95)(9,33,99)(10,105,27)(11,103,22)(12,101,26)(13,108,21)(14,106,25)(15,104,20)(16,102,24)(17,100,19)(18,107,23)(37,54,72)(38,52,67)(39,50,71)(40,48,66)(41,46,70)(42,53,65)(43,51,69)(44,49,64)(45,47,68)(55,76,82)(56,74,86)(57,81,90)(58,79,85)(59,77,89)(60,75,84)(61,73,88)(62,80,83)(63,78,87) );

G=PermutationGroup([[(1,40),(2,104,41,63),(3,105,42,55),(4,43),(5,107,44,57),(6,108,45,58),(7,37),(8,101,38,60),(9,102,39,61),(10,82),(11,66,83,94),(12,67,84,95),(13,85),(14,69,86,97),(15,70,87,98),(16,88),(17,72,89,91),(18,64,90,92),(19,54,77,28),(20,78),(21,47,79,30),(22,48,80,31),(23,81),(24,50,73,33),(25,51,74,34),(26,75),(27,53,76,36),(29,46),(32,49),(35,52),(56,106),(59,100),(62,103),(65,93),(68,96),(71,99)], [(1,103,40,62),(3,55,42,105),(4,106,43,56),(6,58,45,108),(7,100,37,59),(9,61,39,102),(10,65,82,93),(12,95,84,67),(13,68,85,96),(15,98,87,70),(16,71,88,99),(18,92,90,64),(19,28,77,54),(20,46,78,29),(22,31,80,48),(23,49,81,32),(25,34,74,51),(26,52,75,35)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108)], [(1,31,94),(2,29,98),(3,36,93),(4,34,97),(5,32,92),(6,30,96),(7,28,91),(8,35,95),(9,33,99),(10,105,27),(11,103,22),(12,101,26),(13,108,21),(14,106,25),(15,104,20),(16,102,24),(17,100,19),(18,107,23),(37,54,72),(38,52,67),(39,50,71),(40,48,66),(41,46,70),(42,53,65),(43,51,69),(44,49,64),(45,47,68),(55,76,82),(56,74,86),(57,81,90),(58,79,85),(59,77,89),(60,75,84),(61,73,88),(62,80,83),(63,78,87)]])

56 conjugacy classes

class 1  2 3A3B3C3D4A4B4C4D6A6B9A9B9C9D9E9F12A···12H18A···18F36A···36X
order12333344446699999912···1218···1836···36
size1311484833333333484848483···33···33···3

56 irreducible representations

dim11113333333
type++
imageC1C3C3C3A43- 1+2C3×A4C42⋊C3C9⋊A4C3×C42⋊C3C42⋊3- 1+2
kernelC42⋊3- 1+2C42⋊C9C4×C36C3×C42⋊C3C2×C18C42C2×C6C9C22C3C1
# reps142212246824

Matrix representation of C42⋊3- 1+2 in GL3(𝔽37) generated by

3600
060
006
,
600
0310
001
,
070
0033
3400
,
001
100
010
G:=sub<GL(3,GF(37))| [36,0,0,0,6,0,0,0,6],[6,0,0,0,31,0,0,0,1],[0,0,34,7,0,0,0,33,0],[0,1,0,0,0,1,1,0,0] >;

C42⋊3- 1+2 in GAP, Magma, Sage, TeX

C_4^2\rtimes 3_-^{1+2}
% in TeX

G:=Group("C4^2:ES-(3,1)");
// GroupNames label

G:=SmallGroup(432,100);
// by ID

G=gap.SmallGroup(432,100);
# by ID

G:=PCGroup([7,-3,-3,-3,-2,2,-2,2,169,50,1515,360,10399,102,9077,15882]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^9=d^3=1,d*b*d^-1=a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^2*b,c*b*c^-1=a^-1*b^2,d*c*d^-1=c^4>;
// generators/relations

Export

Subgroup lattice of C42⋊3- 1+2 in TeX

׿
×
𝔽